Synthesis and Complex Stability of Parent and *C*-Functionalised Derivatives of 1,4,7-Triazacyclononane-1,4,7-tris[methylene(methylphosphinic acid)]: an Effective New Complexing Agent

Christopher J. Broan, Karl J. Jankowski, Ritu Kataky and David Parker*

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK

The title ligand forms kinetically stable complexes with indium and gallium and exhibits a marked selectivity $(10^{5.6})$ for binding Mg²⁺ over Ca²⁺ in aqueous solution.

There is considerable interest in the chemistry of aminoalkylphosphinic acids as analogues of the ubiquitous amino acids.¹ There are few reports of the complexation properties of these ligands² although the related phosphonic acid derivatives have been more thoroughly investigated.³ With polyazamethylphosphonic acids $[R_2NHC_2PO(OH)_2]$, complex stabilities are lower than those of the corresponding acetates although ligand basicities are higher. There is also a pronounced tendency for these ligands (with two basic groups per phosphorus) to form protonated metal complexes of moderate stability, therefore facilitating acid-mediated metal decomplexation. Notwithstanding the reported poor complexing ability for ethylenediamine-tetrakis(methylenephosphinic $acid)^{2a}$ and for the tetrakis[methylene(phenylphosphinic acid)] analogue, $2c^+$ the synthesis and complexation behaviour of the triazacyclononane and tetraazacyclododecane poly-[methylene(methylphosphinic acids)] has been studied.⁴ In addition C-functionalised analogues have been prepared bearing remote primary amine groups in order to permit subsequent derivatisation and protein linkage. This is with a view to preparing, for example, ¹¹¹In and ⁶⁷Ga radiolabelled antibodies for use in tumour imaging 5,6

Reaction of 1,4,7-triazacyclononane with diethoxymethylphosphine and paraformaldehyde in dry tetrahydrofuran yields a mixture of 1a and 2 which may be separated by chromatography on neutral alumina. ‡ The triester 1a exists as a mixture of two diastereoisomers (in a ratio of 5:2, as observed by ¹³C NMR) which may be hydrolysed (6 mol dm⁻³ HCl; 18 h; 140 °C) to yield the triacid 1b [δ_P (D₂O, pD = 0) 50.0; $\delta_{\rm C}$ (D₂O) 19.43 ($J_{\rm CP}$ 93 Hz), 55.60, 59.06 ($J_{\rm CP}$ 92 Hz)]. Compound 1a may also be prepared by alkylation of triazacyclononane with BrCH₂P(Me)O₂Et [δ_P (CDCl₃) 47.1] or $MeSO_2OCH_2P(Me)O_2Et$ [δ_P (CD₂Cl₂) 42.9] (dimethylformamide; K₂CO₃; 60 °C; 6 h; 60%). The bicyclic tetrahydroimidazole 2 gave a diagnostic ¹³C NMR resonance for the NCH₂N carbon at δ 76.2. The constitution of 2 [m/z (DCI) 262 (M⁺ + 1); $\delta_{\rm H}$ (CDCl₃ 4.20, 4.12 (d + d for the diastereotopic NCH₂N)] was confirmed by acid hydrolysis which yielded the monosubstituted amino acid 3 [m/z (FAB)]222 (M⁺ + 1); $\delta_{\rm C}$ (D₂O, pD 0.5) 19.65 (J_{CP} 85 Hz); 47.95, 49.56, 55.44 (CH₂N); 58.98 (J_{CP} 101 Hz)]. Its isolation may permit the synthesis of various other selectively functionalised triazacyclononane derivatives.

The reaction of (2S)-2-(4-benzamidobutyl)-1,4,7-triazacyclononane⁶ with MeP(OEt)₂ and paraformaldehyde in tetrahydrofuran (THF) yielded **4a** as a mixture of two diastereoisomers [30%; *m/z* (DCI) 665 (M⁺ + 1); δ_P (CDCl₃ 52.3, 51.4, 50.3, 49.9]. Hydrolysis (6 mol dm⁻³ HCl; 140 °C; 18 h) gave the amino acid **4b** and further reaction with bis-(*p*-nitrophenyl)succinate (Me₂SO, *N*-methylmorpholine; 20 °C; 3 h) yielded the active ester **4c**.

Admixture of equimolar quantities of **1b** and either $Ga(NO_3)_3$ or $In(NO_3)_3$ in aqueous solution (pH 2) yields the corresponding neutral complexes. The gallium complex [δ_P (D₂O, pD 1) 41.6; δ_C (D₂O) 19.6 (J_{CP} 101 Hz); 56.6, 60.1; 63.3 (J_{CP} 85 Hz)] may be observed by ⁷¹Ga NMR spectroscopy in aqueous solution [δ_{Ga} + 136.3 (w_1 215 Hz)] consistent with its high stability with respect to acid dissociation and the presence of a C_3 axis in the complex. Similar behaviour has been observed for the gallium complex of the tris(carboxymethyl) analogue.⁷ The indium complex [δ_P (D₂O, pD 1) 39.1; δ_C 19.6 (J_{CP} 100 Hz); 58.0, 63.3 (J_{CP} 85 Hz)] was less stable with respect to acid-catalysed dissociation than [Ga·1b], but of comparable stability to the complex of the tris(carboxymethyl) analogue.⁷

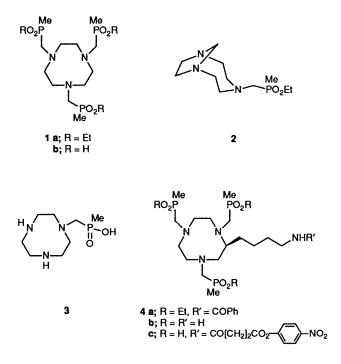


Table 1 Protonation constants for ligand 1b and binding constants for the complexes [298 K, H₂O, $I = 0.1 \text{ mol } \text{dm}^{-3} \text{ (Me}_4\text{NNO}_3)$

p <i>K</i> 1 ^{<i>a</i>}	р <i>К</i> 2 ^{<i>b</i>}	р <i>К</i> ₃ ^b	$\log K_{\rm MgL}$	$\log K_{MgLH}$	log K _{CaL}
12.1	7.76	3.75	11.78	6.91	6.14

^a Determined by ³¹P NMR titration. ^b Determined by pH-metric titration followed by analysis using SCOGS-2 and SUPERQUAD.

[†] Note added in proof: preliminary ³¹P NMR measurements suggest that the first pK_a for the phenylphosphinic derivative is ≥ 14.5 (and not 7.91 as reported^{2c}), so that metal-ligand constants are considerably underestimated.

 $[\]ddagger$ All compounds gave satisfactory NMR (¹H, ¹³C, ³¹P) and mass spectral data in accord with the proposed structures.

Protonation and stability constants for complexation with Ca²⁺ and Mg²⁺ have been measured in aqueous solution (Table 1). The ligand is more basic than the related tris(carboxymethyl) analogue and exhibits a remarkable and pronounced selectivity to bind magnesium over calcium. The ratio of stability constants $(10^{5.6})$ is higher than was observed for the phosphonic acid analogue^{3a} ($10^{4.6}$) and may be related to magnesium's preference for six-coordination and to the favourable binding interaction associated with the excellent donicity of the phosphorus-bound oxygen.

We thank SERC, MRC, and Celltech Ltd. for support and the Royal Society of Chemistry for a Hickinbottom fellowship.

Received, 6th September 1990; Com. 0/04066E

References

1 F. Schwerdtle, H. Bieringer and M. Finke, Z. Pflanzenkr. Pflanzenschutz, 1981, 9, 431; E. K. Baylis, C. D. Campbell and J. R. Dingwall, J. Chem. Soc., Perkin Trans. 1, 1984, 2845; J. Maier, Phosphorus Sulfur, 1983, 14, 295.

- 2 (a) R. J. Motekaitis, I. Murase and A. E. Martell, J. Inorg. Nucl. Chem., 1971, 33, 3353; (b) A. I. Plaza and S. O. Grim, Inorg. Synth., 1976, 16, 199; (c) I. Lukes, P. Hermann and P. Pech, Coll. Czech. Chem. Commun., 1989, 54, 653.
- 3 (a) Macrocyclic derivatives: R. Delgado, L. C. Siegfred and T. A. Kaden, Helv. Chim. Acta., 1990, 73, 140; M. Tazaki, K. Nita, M. Takagi and K. Ueno, Chem. Lett., 1982, 571; M. I. Kabachnik and J. M. Polykarpov, Zh. Obshch. Khim. SSSR, 1988, 58, 1937; M. I. Kabachnik, T. Y. Medved, F. I. Bel'skii and S. A. Pisareva, Izv. Akad. Nauk. SSSR Ser. Khim, 1984, 844; C. F. G. C. Geraldes, A. D. Sherry and W. P. Cacheris, Inorg. Chem., 1989, 28, 3336. (b) Acyclic derivatives: K. Saada, T. Araki and T. Suzaki, Inorg. Chem., 1987, 26, 1199; R. J. Motekaitis, I. Murase and A. E. Martell, Inorg. Chem., 1976, 15, 2303; B. V. Rao and P. M. Puri, Polyhedron, 1989, 8, 453; R. D. Gillard, P. D. Newman and J. D. Collins, Polyhedron, 1989, 8, 2077.
- 4 C. J. Broan, K. J. Jankowski, R. Kataky and D. Parker, J. Chem. Soc., Chem. Commun., 1990, following communication.
- 5 A. S. Craig, I. M. Helps, K. J. Jankowski, D. Parker, M. A. W. Eaton, A. T. Millican, A. Harrison, S. K. Rhind and C. Walker, J. Chem. Soc., Chem. Commun., 1989, 794; A. S. Craig, I. M. Helps, D. Parker, H. Adams, N. Bailey and G. Ferguson, Polyhedron, 1989, 8, 2481.
- 6 J. P. L. Cox, A. S. Craig, K. J. Jankowski, I. M. Helps, D. Parker, N. R. A. Beeley, B. A. Boyce, K. Millar, A. T. Millican and M. A. W. Eaton, J. Chem. Soc., Perkin Trans. I, 1990, 2567. 7 A. S. Craig, D. Parker, H. Adams and N. Bailey, J. Chem. Soc.,
- Chem. Commun., 1989, 1793.